VII Stability

Recall:

•

for and for in
$$C^{\infty}(M,N)$$
 are equivalent
if $\exists (r, k) \in Did(M) \times Did((N) S.t.)$
 $f_2 = k \circ f_1 \circ r^{-1}$

$$f \in C^{\infty}(M,N)$$
 is Steble if there is a
 $nbh \ U_{f} \in C^{\infty}(M,N)$ s.t. each $g \in U_{f}$ is
 $equivalent$ to f .
 $(r, k, f) \mapsto l \circ f \circ r^{-1}$
 $(r, k, f) \mapsto l \circ f \circ r^{-1}$

is open.

Problem: Difficult to check (need invariants such as vank, corank, # self-intersections, transversality...) 1. Def: Let fe C°(M,N)

1.
$$V \in C^{\infty}(M, TN)$$
 is a vector field along f
if $J = TN$
 $M = TV$, i.e. $T = V = f$
 $M = V$

$$C_{f}^{\infty}(M,TN) := \{ \text{ vect. fields along } f \}.$$

2.
$$f$$
 is infinitesimally stable if for all
 $v \in C_{f}^{\infty}(M,TN)$ there exist vector fields
s on M, t on N, such that

$$n = qt \cdot s + f \cdot t$$

e.g.

$$M = N = R \quad f: \times \mapsto \times^{k}$$
Let $V \in C_{f}^{\infty}(R, TR)$, $\pi(\underbrace{V(x)}_{U}) = f(x) = \times^{k}$

$$\mathbb{R}^{2}$$

$$V_{i}(x)$$

$$V_{i}(x)$$

$$\bigvee = df \cdot s + t \cdot f$$

$$(f(x)) = (f(x)) + (f(x))) + (f(x)) + (f(x)) + (f(x))) + (f(x)) + (f(x))) + (f(x)) + (f(x)) + (f(x))) + (f(x)) + (f(x)) + (f(x)) + (f(x))) + (f(x)) + (f(x)) + (f(x)) + (f(x))) + (f(x)) +$$

$$(=) \quad \forall_2(x) = k \cdot x^{h-l} \cdot s_2(x) + t_2(x^k) \quad \forall x \in \mathbb{R}$$

Eq. - every Banach space
-for M compact: · C^O(M,R)
· C^O(E) where
$$\stackrel{E}{m}$$
 vect. bundle
· C^O(M,TN)
(with the Whithey C^O=topology)

træchet spaces are the most general setting where diffiability, smoothness, munifolds can be defined in a familiar way.

This means
$$dy_f = \chi_f \oplus \beta_f$$
 where
 $\chi_f : C^{\infty}(TM) \rightarrow C^{\infty}_f(M,TN)$
 $\beta_f : C^{\infty}(TN) \rightarrow C^{\infty}_f(M,TN)$

are given by
$$S \mapsto x_f(s) = df \cdot s$$

 $E \mapsto \beta_f(t) = t \cdot f$

Thus, f (infinitesimally) stable/ γf submension if for all $v \in C_{f}^{\infty}(M, TN)$ there exist $s \in C^{\infty}(TM)$, $f \in C^{\infty}(TN)$ such that

$$\ll f(z) + \beta f(f) = n$$

3. Prop: Every submersion f: M-> N is inf. stable.

$$\frac{P_{coof}}{x_{f}} : C^{\infty}(TM) \rightarrow C_{f}^{\infty}(M, TN) \quad is onto, because :$$

Then
$$df(x): H_X \longrightarrow T_{f(x)}N$$
 is an iso which
means for every $v \in C_f^{\infty}(M, TN)$ there is
set s.t. $df \cdot s = v$.

Y. Prop:
$$f \in C^{\infty}(M, \mathbb{R})$$
 is stable iff
 f is Morse with all critical values distinct.
Proof:
=): Since f is stable, there is $U_{f} \in C^{\infty}(M, \mathbb{R})$
with all $g \in U_{f}$ equivalent to f .
Exercise IZ.3: Morse fetus with distinct critical
values are dense in $C^{\infty}(M, \mathbb{R})$.
So f is equivalent to such a function f
 $\exists (r, l) \in Diff(M) \times Diff(N) : \tilde{f} = lofor''$
But then f must also have distinct
critical values.
 \in : see G&G.

So for Morse fotns we have "stable = gevenic", but in general this is not true. However, as for Morse fotns, stable maps

exhibit only "generic" types of singularities
(non degeneracy of crit. pts, Whitney's thm, etc...).
5. Peop. (
$$\in Emb(M,N) = 7$$
 f stable. If $N \ge 2m + 1$,
then the converse also holds.
Proof:
 $= 7: im(f) cN$ is a submit of N and
 $f:M \rightarrow im(f)$ is a diffeom., so $V \in C_{f}^{\infty}(M,TN)$
can be identified with a vector field
 \vec{V} on $im(f)$. Extend it smoothly to a
vector field t on N.
Then tof = $\vec{V} \circ f = V$. Setting $s=0$
we get that f is inf. stable, hence stable
 $(by Thm.2)$.
 $\leq : f$ stable $\Rightarrow \exists U_{f} \subset C^{\infty}(M,N)$ where each

map is equivalent to f.

Here we really need immensions to be injective
(i.e., embeddings if M compact), for instance
-
$$f: S' - i R^2$$
 of f , O not stable!
" \in " O for an O are both not equivalent

"
$$\in$$
" $\mathcal{P}_{f\epsilon}$ and \mathcal{O} are both not equivalent
 \mathcal{O}_{s}^{*} for to $f(\# \text{ self-infersections})$.

(appropriate notion: "immersions with normal crossings")